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This paper considers the steady axisymmetrlc flow of an ideally conducting 
plasma across an azimuthal magnetic field. The possible appearance of sin- 
gular points (of elliptic and hyperbolic types) In the family of current 
lines JH~,F const is Investigated. The shapes of the critical surfaces 
considered, on which the flow velocity u attains the signal velocity 

are 

The stability of such flows is discussed. 

1. Eleotrlo oument llnee. If the fluid velocity has two components 

and u, t and the magnetic field has only one component H = H,, thenunder 

the conditions of axial symmetry, the equations of magnetohydrodynamics for 

isentropic flow [S(S) = const] reduce to the system [ 11 

Here p Is the density, W the enthalpy, < = <(r,,~) the stream function 

which defines the velocity components 
1 at 

I- : \ : , , I UP=----, 
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- _____--- **’ The arbitrary functions B($) and 
. . *--__._____.---- 

_.-* U(s) depend only on 5 . In addition 
d to the Bernoulli integral (1.2), we 

have the “frozen” integral of force 

lines of the magnetic field. 

v, U--U 11 pr2 = B(E) (I e rHo / 1/411) (1.4) 

Fig. 1 The streamlines of the fluid are 
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defined by Equation t(r,r) = const , while the electric aurrent lines are 

given by Equation r(r,a) = const 

Let us consider the flow in the space between two electrodes (Flg.1). 

Plasma accelerati’on in this system occurs both due to thermal energy and 

action of electrodynamic forces. In the case when the magnetic pressure is 

small in comparison with the gas pressure, I.e. 

p s 8npE2 > I (4.5) 

the acceleration is mainly due to the thermal energy. In this cast, the 

electric current aligns with the flow, which to first approximation is gov- 

erned by the laws of ordinary gas dynamics; thus, ‘it Is capable of changing 
dlrection, being In one part of the flow accelerating and In another part 

decelerating. Consequently, when (1.5) is satisfied, one may expect the 

appearance of current eddies. K.V. ~ushlinskii, N-1; fferlakh and A.I. No- 

rozov,bp means of numerical computations with an electronic computer, dis- 

covered the phenomenon of the current eddies at electrodes: the current 
leaving one electrode returns to the same electrode before reaching the other 

electrode. Below, this phenomenon will be studled analytically. 

We note that the current density component perpendicular to the stream- 

line can vanlsh only at the point where 

dvz rds -4pW(p)-g =o (Z.6) 

This equation As obtained from the condition jl= r-l ar / 13s =O, if 

(1.2) and (1.4) are differentiated along the streamline r = r(s) Accord- 

ing to (1.6), when the flow is accelerating dua/ds z 0 , the current may 

form loops only when dr/ds > 0 , i.e. on the expanding part of the electrode. 

To calculate the flow, we limit ourselves to the case U(s) = const ,and 

we assume that the magnetic pressure Is small In comparison with the gas 

pressure (@ > 1). Moreover, we shall consider the flow to be slowly vary- 

ing along the z-axis. Neglecting In (1.1) and (1.2) quantltles of order 

ria , (a~&J%t)~ and aa f$a.$, we obtain 

Integration of these equations yields 

&=p;(rvP), W(P) + +vz= u 

Here f/(s) and J)(P) are arbitrary slowly varying functlons of the varl- 

able s , the knowledge of which permits the determination of the correspond- 

ing streamlines c(r,s) = const . From the second equation of (1.8), It 

follows that p is also dependent on s only. We set R = const , i.e we 

require that one of the streamlines be a strallght line r = R . 

The pattern of the streamlines is given In Fig.1, where the velocity V(r) 

lies along the s-axis. The streamlines are equipotentlal lines and any pair 

of them may represent the electrodes. In the neighborhood of the planes 
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i! = r,J and r=r , 

1/27X, M 

where the velocity V equals zero and the maximum value 

respectively, the flow cannot be slowly varying as required, and 

*consequently, the results thus obtained are applicable only In the middle 

part of the nozzle, where the streamlines are still sufficiently smooth. 

To determine the singular point In the family of current lines I!r,x) = 

= const , we set to zero the derivatives ar/ar and al/a= of I= prZ~(5); 

we get 

ar 
-=prI2B+pr2VB’]=0, ar 

~=rZ[~R+p’Z,~ad~~)R,]=O (1.9) 

From this, It Is clear that for singular point to exist, It Is necessary 

that B'/B < 0 , and ln the Isomagnetic case ( B = const ), no singular 

points exist. Ellml~~tlng from (1.9) the quantity B'(s) and using the 

second equation (1.8), differentiated wdth respect to d , and also the rela- 
tion pw’(p) = oTa, where cT = wp Is the velocity of so&d, we get 

r2 = R2 (1 - V2 I cT2) (1.10) 

This equation defines the curve CO', shown in Flg.1. On this curve, the 

component of the current density Jo_, perpendicular to the streamlines vani- 

shes. From (l.ll), It Is clear that this curve connects the point (r=o, 

V = 05p ) lYlng h% the narrowest cross-section of the nozzle and the point 

(r =I?> Y-O). Singular points of the family of lines I = const may 

lie only on the curve OO', and consequently, are located below the straight 

line r=R on streamlines with dr/ds > 0 . 

To Identify the type of a singular point, we calculate,the second derlka- 

tlves of ~(r,a). Conslaerlng that 

and using Equations (1.8) to (l.lO), we get 

a21 
m= - 8pB _t p3r4V2B” (1.12) 

a21 
-= 
araz 

_ prLB (I_ 5) _ +$PBtf (1.13) 

av 
-@--=- (1.14) 

The sign of the Invariant 2 = I,,I,, - IFZ determines the type of the 

singular point. Further, restricting ourselves to the case of linear depen- 

dence B(S) , we find that the sign of Z agrees with the sign of the 

Expression 
-1+7$+2(y-2)s (1.15) 

From this, It follows that if the singular point lies on the part of the 

curve CO' located below the point 

r, = 0.92 R, V, = 0.22 u (1.16) 



then It 1s elliptic In type; If It lies above fS , then It 

ln type (Flg.1). 

We note that In the case considered 

B = b(E + c), I = pr% (E + c) 

1199 

Is hyperbolic 

(1.17) 

one of the streamlines 5 = - c will at the same time be a current line. 

On this line, the magnetic field Hq vanishes. If we substitute In (1.17) 
tile expressions for p and 5 , then we get the equation for the electric 

current lines 
V(UU+l rS(7.2 - R2) + C(u’ -Vz)+i r2 = const 

which may be solved with respect to e . 

For negative values of o (Fig. 2) 
the family of current lines may have two 

singular points - elliptic and hyperbo- 

llc. When 0 = 0, the hyperbolic point 
r-R 

moves to the channel Inlet (Fig. 3) where 
V=O, while the elliptic point lies on 

r =R/J2 , When c > 0, only an elllp- 

tic singular point occurs. 
Y=D v=u' 

Fig. 2 
In Fig. 2 to 4 electric current lines 

for a linear dependence B = b(< + o) 

are shown. The dotted lines represent the fluid streamlines, each of which 

may represent an electrode. The heavy line represents the streamline 5 =-o, 

on which the magnetic field f& change sign. Fig.2 corresponds to 0 < 0 ; 

here occur both elliptic and hyperbolic singular points. Fig .3 and 4 cor- 
respond to o = 0 and o > 0 , when only elliptic singular points occur. 

Fig. 3 Fig. 4 

2. Oritlorl rurtrorr. The flows, slowly varying along the coordinate .z, 

may be completely calculated ln the llmltlng cases of weak and strong mag- 

netic fields p > 1 and pet. 

Such calculations, considering only the first derivatives with respect to 

z , have been carried out In [2 and 31; there It was shown that in the chan- 

nels of the corresponding profiles the plasma Is accelerated, and the velo- 

city equal to the signal velocity Is attained at the narrowest part 3f the 
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channel. The transition surface (on which the fluid velocity equals the sig- 

nal velocity) turned out to be inclined toward the side of the fluid motion 

(curve 0.4 In Fig. 5). 

Nevertheless,taklng into accout the terms in 

the basic equations (1.1) and (1.2) that contain 

d2</d$ and (dc/dz)” results in a bending of the 

“sonic surface” toward the opposite direction. 

Fig. 5 
We carry out here the correspondjng calcula- 

tions fbr weak and strong magnetic fields. limit- 
ing ourselves to the case U = const and considering In the first approxi- 

mation the variability of B(E). 

When a(p) = const , the flow is described by EqUatiOns 

Here the velocity components and the magnetic field are 

As is obvious from (2.1), when B = const , the flow will be irrotatlonal 

(rot V - 0). Restricting ourselves to the flows in question, namely those 

which vary slowly along the s-axis, we seek solutions to the system (2.1) in 

(2.3) 

Correspondingly, v,~ E , while u,= V + vl, , where ullu ea. Moreover, 

we shall consider that B = B, + B’g, where B’E (c B,, we sha3 I. consider 

everywhere only quantities of first order in I?‘, and reject those terms con- 

taining the product of 8’ with all other small parameters. 

In the first approximation, neglecting terms _ ea in Equation (2.1), we 

obtain V = V(r) e 

We shall consider further y(r) as the given velocity on the electrode 

r = A = const . Solving Equation (2.1), we may find with given accuracy the 

function p(r,~) and from condition $(r,z) = const , determine the system 

of electrodes, corresponding to a given velocity V(z) . We confine our- 

selves here only to the determination of the sonic surfaces. To this end, 

it suffices to bow only the velocity u , i.e. to find the first integial 

of Equatlon (2.1). 

In the first approximation 

Eo== i pV(z) rdr (2.41 
R‘ 

Substituting this expression into (2.1). we find the correction to the 

longitudinal velocity, proportional to 8. 

(2.5) 
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The square of the radial velocity u, Is determined to the required accuracy 

by differentiating (2.4). In order to progress further, it Is necessary to 

know the function p(r,z), which is dlf,ferent for the cases of weak (s 31) 
and strong (@ CC 1) magnetic fields. In the zeroth approximation, we have 

W(p)+;= U, p=p(z) for B2-+0 

q+pr2BLz U, pr2~u-;/22v2 Em for TV-, 0 (2.7) 

(2.6) 

Substituiing these expressions Into (2.4) and (2.5), we find for these 

The transition surface on which the velocity crosses the local signal 

velocity [ 41 
E, = I/CT2 + c*2 (c_$ = H/+2 / 4np) (2.10) 

is found from Equation u2= cla. According to (2.2), we have 

C8 2 = cT2 + pr2B2 G (y - 1) W + pr2B2 (2.11) 

To the required approximation, the velocity Is given by Expression 

73 = P + 2v?& + u,2 (2.i2) 
Let u denote the velocity at the exit, where p 4 O($= 2~) , and using 

(2.1), we represent the equation of the sonic surface for the cases of weak 

and strong field, respectively, as 

v2 = $=$ u2 + 2 spr2D2, U2 
212 z--9 

3 
u YW (p) (2.13) 

Here, in both expressions, the second term is small, and In It we may sub- 

stitute p from (2.6) or (2.8), respectively. 

In the first approximation In c , In the llmlting cases of Pd 0 or 

w-+ 0, the sonic surface will be plane and given by Equations 

T/2 (2) = +$- 72, v2 (2) = + 2 (2.14) 

Terms of order @ In the first equation of (2.13) and order W In the 

second stipulate that this surface (for r > A) is inclined toward the side 

of increasing Y(z) . 

To determine the effect connected with the Inclusion of the quantities 

_ ca, it is necessary, on the left-hand side of Equation (2.23), to substi- 

tute V” from the second equation of (2.1). 

We note that according to relations (2.6) and (2.7), for the cases of 

fl > 1 and fl < 1 we may write 

242 -- 3vz !+(l_~)V, !+-V (2.15) 

These quantities, and consequently, also the radial components of the velo- 

city, vanish on the sonic surface In the zero-th approximation. The latter 

is obvious from the fact that the sonic surface In the zero-th approximation 

coincides with the plane of the minimum cross-section of the nozzle. 
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To obtain the complete expression for the velocity we must also take Into 

account a correction to V , due to variability of B(5) . According to 

(2.1), this correction Is 

6T/'= -&J?' lpg&jr (2.16) 

where Instead of p in the cases of p > l'and [3 < 1 we may correspondingly 
substitute the expressions from (2.6) and (2.7). Thus, the equations of the 

sonic surfaces assume the form (2.17) 

V’s (r2_R2_R2 ln $_) = cT*2 + 2 J$$L pr2B2 -v (+-R’) 

V2 r2 - R2 - ~2 ln .ff+. = c**2 -2 

If the expansion of V(Z) Is limited to the linear terms, then taking the 

zero-th approximation sonic surface to be the plane E = 0 , we find 

v’z= 2---r PB2 ------(~2 -R2) + *V's (r2-R2- R2ln_.?) +BB'p2!!$? 
r+l CT2 

(2.20) 

Here terms -v2 In (2.19) as weXias in (2.20) give the curvature of the 

sonic surface toward the side opposite to the mass flow (z< 0) . In fact, 

expanding functions of f In powers of (r -R), we get 

vrz= 2---r 2pB2R --(r 
r+l CT 

-R)- TLT1 ‘T VI2 (F - R)2 + BB’p2R3 (r -R) (2.21) 

v,z= 2-y 2(7--1)W, 
3 CAR 

(r-R) - &AV’2(~-R)2 + %(I.-R) (2.22) 

As shown by Equations (2.21) and (2.22), the Influence of the terms - V” 

Increases away from the streamline 7 = R . Terms - B' partially compen- 

sate the main terms linear In (r -R) when BB'< 0 , and reinforce them 

when BB’S 0 . 

In the cases of both weak and strong magnetic fields the sonic surfaces 

have the form schematically shown In Flg.5, where the line OA corresponds 

to the neglecting of terms - I+, while the line OB shows the shape of 

the sonic su face for llmltlng weak or limiting strong fields, when the terms 

-3or- W (and also - B') may be neglected in (2.21) or (2.22). When B=O, 

(2.21) becomes the well-known expression for the sonic surface in ordinary 

gas dynamics [5] . 

3. On tha atrblllty of the flow, Restricting ourselves to the zero-th 

approximation in the small parameter 8 , we shall consider the stability of 

a cylindrical plasma Jet in a magnetic field having only an azimuthal com- 
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ponent H = H . In a system of coordinates, moving with fluid velocity v, 
the fluid is ,"t rest, and we may apply the criterion on the absence of con- 

vective instability C63 

-%<2& (pZS) (3.1) 

Considering the condition of equilibrium along the radius 

(3.2) 

(satisfied In the first approximation 

represented In the form 

Ha t 

( 1 ra + n&&Q 

This stability condition (3.3) was 

analysis of balance of forces, acting 

in c ), the criterion (3.1) may be 

( H= 

c a = CTa + 4np 8 1 (3.3) 

obtained In [7j (*) on the basis of an 

on an annular plasma tube. It 2s the 

local stability condition for thin plasma a~ull. Violation of this condi- 

tion results in the displacement of the annuli along the radius. In the pre- 

sent case,they are simultaneously convected together with the flow along the 

p-axis. 

If condition (3.1) Is satisfied, then in the absence of helical instabl- 

lity we must require yet another criterion C61 

d In p 
d lnr 

<+ or (rHq2)'<0 (3.4) 

When (3.4) Is violated, helical instability arises with mode m = 1 and 

low pitch. From Expressions (3.3) and (3.4), It follows that for stability 

with respect to axisynsnetric perturbations, It Is at least necessary that 

the derivative (2/r")' be negative; while for stability with respect to 

helical perturbations, we must require the derivative (rP)' to be negative. 

It turnsoutthatin thelsentipic case [S(s) = const], the criterion (3.3) 

is expressed only In terms of the "frozen' Integral 8(5)=/4npr . In fact, 

expressing ,y In terms of B , we may express (3.2) and (3.3) In the form 

csZpJ = - p% (PB)', cS2 (p&s)' + 4p3rB4 < 0 (3.5) 
where the prime represents differentiation with respect to r . Eliminating 

c, from these, we get dB2 I dr < 0 (3.6) 
Since dB” I dr = prV dB2 I dE and V>O, then for stability with 

respect to axlsymmetrlc disturbances It is necessary that dti/dt < 0 . In 
Section l.flows with a linear dependence B = 21 (5 + 0) were considered. 

In this case 
H = ~4~prb W, pV (ri - R2) + cl (3.7) 

in which,- for the purpgse of Investigating stability, the slowly varying. 
functions p(z) and V(P) occurring, may be taken to be constants. From 

") See also [l] page 286. 
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condition (3.6), It follows that stability occurs in the region 5 < - o , 

located In Figs. 2 to 4 below the curve (represented by heavy line) on which 

5 =-c. 

For the case o = 0 (cf. Fig.2) condition (3.6) leads to the requirement 

r<R. Criterion (3.4) narrows down the stability region to the interval 

“/, P< r”< RR”, so that the singular point on the current line, lying at 
r= = l/$‘, falls into the stable region. 

Similarly, in the cases o >< 0 condition (3.6) shows that stability 

occurs In the region 5 <: -c , or for b > 0, in the region negative H 
cp’ 

The coordinates (F,V) of the singular point in the famiiy of current 

lines 1 = const are related by 

r 2 - z_ - c 
c -- 2 pl’ (3.8) 

This relation was obtained from the requirement al/a? = 0 under the con- 

dition that L?(c) = b(t + C) . Criterion (3.4) In this case gives 

I.e. the singular point also falls inside the stable region. However, it 

lies In the immediate neighborhood of the inner electrode. 

We ncte that in the case of weak magnetic field H - rB(5) , and for 

B = const , the two stability criteria (3.6) and (3.4) are not satisfied. 

For strong magnetic field, the case B = const corresponds to stability with 

respect to helical perturbations, since H - l/F . However, the condition 

(3.6), which is general for weak and for strong fields, is not satisfied. 

In the case of llmltlng strong magnetic field b” < 1 (wlthB +const), 

for a flow that is slowly varying along the x-axis, there exists the integral 

c 21 pr?R (Q = F (z) (3.10) 

while the streamlines are determined by Expression 

(3.11) 

From (3.10), It follows that H = @ = 7-l F (z), and criterion (3.4) 

holds everywhere. Investigation of (3.11) for B = b(< + e) shows that the 

streamllne pattern obtained Ss similar to that shown In Figs. 2 to 4 . Cri- 

terion (3.6) also leads to the requirements <<-c ,so that the stability 

regions lie below the corresponding curves where H changes sign. 

The authors express their gratitude to A.I. Morozov and K.V. Brushlinskii 

for discussions and valuable advice. 
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