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This paper conslders the steady axisymmetrlc flow of an ldeally conducting
plasma across an azimuthal magnetlc fleld. The possible appearance of sin-
gular points (of elliptic and hyperbolic types) in the family of current
lines rH, = const is investigated. The shapes of the critlcal surfaces are
considered, on which the flow velocity ¥ attains the signal velocity

¢, =V e’ H 2fanp
The stabillty of such flows 1s dlscussed,

1, Bleotrio ourrent lines. If the fluld velocity has two components v,
and v, , and the magnetic fleld has only one component H = I{w, then under
the conditions of axlial symmetry, the equations of magnetohydrodynamics for
isentropic flow [S(g) = const] reduce to the system [1]

1 6 1 06 , 1 0 1 88 , prdB* _ dU
v ma T a et T ® T E (1-1)
W (o) = 3 ¥* +pr*B* = U (§) (1.2)

Here p 1s the denslity, W the enthalpy, g = g(r,z) the stream functlon

which defines the velocity components

1 8 1 8
7 Br=—og, = (13)

The arbltrary functions 5(g) and
v(z) depend only on £ . In addition
to the Bernoulll integral (1.2), we
have the "frozen" integral of force
lines of the magnetic field.
I/prt=BE) {=rHe/Vin) (1.4)

The streamlines of the fluld are
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defined by Equation §(r,z) = const , while the electric¢ current lines are
given by Equation 1(r,z) = const

Let us consider the flow in the space between two electrodes (Fig.1).
Plasma acceleration in this system occurs both due to thermal energy and
action of electrodynamic forces. In the case when the magnetic pressure 1s
small in comparison with the gas pressure, 1l.e.

B =8npH?2>1 (1.5)

the acceleration is mainly due to the thermal energy. In this case, the
electric current aligns with the flow, which to first approximation 1s gov-
erned by the laws of ordinary gas dynamics; thus, it is capable of changing
direction, being in one part of the flow accelerating and in another part
decelerating, Consequently, when (1.5) is satisfled, one may expect the
appearance of current eddies, K,V. Brushlinskii, N.I. Gerlakh and 4,I. Mo-
rozov, by means of numerical computations with an electronic computer, dis-
covered the phenomenon of the current eddles at electrodes: the current
leaving one electrode returns to the same electrode before reaching the other
electrode, Below, this phenomenon will be studled analytically.

We note that the current density component perpendicular to the stream-
line can vanish only at the point where

dv? , d P
r& —dpW'(p) - =0 (1.6)

This equation is obtained from the condition j, = r*9l/ds =0, 1f
(1.2) and (1.4) are differentiated along the streamline r = r(g) Accord-
ing to (1.6), when the flow is accelerating 4uv®/ge > O , the current may
form loops only when dr/as > 0, i.e. on the expanding part of the electrode.

To calculate the flow, we limit ourselves to the case U(g) = const , and
we assume that the magnetic pressure is small in comparison with the gas
pressure (B S>> 1). Moreover, we shall consider the flow to be slowly vary-
ing along the z-axis. Neglecting in (1.1) and (1.2) quantities of order
7, (3g/32)° and 2a%g/as°, we obtaln

a 1 98 1 1 0E\2
=0 W@+3%F;Q~U (1.7
Integration of these equations ylelds
=0 (P —RY), W+ V=U (1.8)

Here V(z) and R{z) are arbitrary slowly varying functions of the vari-
able z , the knowledge of which permits the determination of the correspond-
ing streamlines e(r,z) = const . From the second equation of (1.8), 1t
follows that p 1is also dependent on g only. We set R = const , l.e we
require that one of the streamlines be a stralght line r =R .

The pattern of the streamlines 1s glven in Fig.l, where the velocity ¥(z)
lies along the z-axis. The streamlines are equipotential lines and any pair
of them may represent the electrodes. In the neighborhood of the planes
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Z =2 and g = 'M , where the velocity ¥V equals zero and the maximum value
vf2l/ = u, respectively, the flow cannot be slowly varying as required, and
cconsequently, the results thus obtained are applicable only in the middle
part of the nozzle, where the streamlines are still sufficiently smooth.

To determine the singular point in the family of current lines I({r,z) =
= const , we set to zero the derivatives ar/3r and aI/daz of I=prB(e);
we get

[ —
o — pri2B+prVB’l =0, a-i:rz[i‘f?-Ber'z - dlel) B]=0 (1.9

From thils, 1t 1s clear that for singular point to exlst, it is necessary
that B’/B < O , and in the isomagnetic case ( B = const )}, no singular
points exist., Eliminating from (1.9) the quantity B’(g) and using the
second equation (1.8), differentlated wdth respect to 2 , and also the rela-
tion pw’(p) = oz?, where o, = J;;7B is the velocity of sound, we get

r=R(1 —V?/cp?) (1.10)

This equation defines the curve (00’, shown in Fig.l. On this curve, the
component of the current density fl, perpendlcular to the streamlines vani-
shes. From (1.11), it 1s clear that this curve connects the point ( r = 0,
Vv = or ) lying a* the narrowest cross-section of the nozzle and the point
(r=R, v=0). Singular points of the family of lines I = const may
lie only on the curve (0’, and consequently, are located below the straight
line r = R on streamlines with gr/de > O .

To identify the type of a singular point, we calculate the second deriva-
tives of I{r,z). Considering that

W X=2 = ¥—2 2 y is adiabatic (1.11)
p p? exponent

and using Equations (1.8) to (1.10), we get

= — 8B 4 p*rVB (1.12)
021 V'B 2y 3 Vs o, )
621 RZV’ZB V2 2V4 3 V4 , ”
= [1+(7+2>0—T2—c—4;]+—‘;—r°c—ﬂ23 (1.14)

The sign of the invariant X = [,.J,, — I, determines the type of the
singular point. PFurther, restricting ourselves to the case of linear depen-
dence B(g) , we find that the sign of T agrees with the sign of the

Expression 2 4
Y vt (1.15)
T

—1-+7 T+ Z(Y - 2)

T ¢
From this, it follows that 1f the singular point lies on the part of the
curve (00’ located below the point

r. = 0.92 R, Ve =1022u (1.16)
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then 1t 1s elliptic in type; 1f 1t lies above p., , then it 1s hyperbolic
in type (Fig.1).

We note that in the case considered
B=0bE+c), I=prd (E+c (1.17)

one of the streamlines g = — ¢ willl at the same time be a current line.
On this line, the magnetic field f, vanishes. If we substitute in (1.17)
tne expressions for p and £ , then we get the equation for the electric
current lines a 1
V(u? —V2)v=1 r¥(r® — R?) 4 C(u®*—V?)¥=1ir® = const
which may be solved with respect to 7 .

For negative values of o (Fig, 2)
the family of current lines may have two
singular points — elliptic and hyperbo-
lic. When ¢ = O, the hyperbolic point
moves to the channel inlet (Fig. 3) where
Vv = 0, while the elliptic point lies on
r=R//f2 . When o > O, only an ellip-
tic singular point occurs.

Fig. 2 In Fig. 2 to 4 electrlc current lines
for a linear dependence B = b(€ + o)
are shown. The dotted lines represent the fluid streamlines, each of which
may represent an electrode. The heavy line represents the streamline € =-—,,
on which the magnetic fleld pgo change slgn., Fig.2 corresponds to ¢ < O ;
here occur both elliptic and hyperbolic singular points. Fig.3 and 4 cor-
respond to ¢ = 0 and ¢ > O , when only elliptlic singular polnts occur.

Fig. 3 Fig. 4

2, Oritioal surfaces, The flows, slowly varying along the coordinate z,
may be completely calculated in the limiting cases of weak and strong mag-
netic rields B >>1 and B <L 1.

Such calculations, considering only the first derivatives with respect to
z , have been carried out in [2 and 3]; there it was shown that in the chan-
nels of the corresponding profiles the plasma 1s accelerated, and the velo-
city equal to the signal velocity is attained at the narrowest part of the
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channel. The transitlon surface {on which the fluid velocity equals the sig-
nal velocity) turned out to be inclined toward the side of the fluid motion

2 {curve 04 in Fig. 5).
~_, I,

Nevertheless, taking into accout the terms in
the basic equations (1.1) and (1.2) that contain
d?e/ds® and {dg/d2)® results in a bending of the
"sonic surface" toward the opposite direction.

We carry out here the corresponding calcula-
tions for weak and strong magnetic fields, limit-

ing ourselves to the case [ = const and considering in the first approxi-
mation the variability of pm{z).

Fig. 5

wWhen p(g) = const , the flow is described by Equations
o 1 ot o 1 5

2 p¥® 4B v? 2Rz
ar pr er 3z pr 0z +T—E?m ! W(p)+-—2-+pr8 =U 1)
Here the velocity components and the magnetic field are

_ 1 1 8t =
= =~ He=VinorB (2-2)
As is obvious from (2.1), when B = const , the flow will be irrotational
{rot v = 0). Restricting ourselves to the flows in question, namely those

which vary slowly along the g-axis, we seek solutions to the system {2,1) in

the for kLN ) ...  (Ga~e<i) 2.3)

Correspondingly, v,~ ¢ , while v,= ¥ + v,, , where n,,~ ¢®. Moreover,
we shall consider that B = B, - B'E, where B'E <€ B,, we shall consider
everywhere only quantities of first order in p‘, and reject those terms con-
taining the product of J‘ with all other small parameters.

In the first approximation, neglecting terms ~ ¢* in Equation {2.1), we
obtain ¥ = v{x) .

We shall consider further p{s) as the given velocity on the electrode
r = p = congt , Solving Equation {2.1), we may find with given accuracy the
function e(r,z) and from condition g(r,z) = const , determine the system
of electrodes, corresponding to a given velocity V(z) . We confine our-
selves here only to the determination of the sonic surfaces. To this end,
1t suffices to lnow only the veloecity v , i.e. to find the first integral
of Equation (2.1).

In the first approximation

go‘“—-‘:

pV () rdr (2.4)

Wz

Substituting this expression into {2.1). we find the correction to the

longitudinal velocity, proportional to €.
r r

Vyy v — Sdr' %[3}7— S—(%— ©V) rdr] (2.5)
4 R
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The square of the radial veloclty v, is determined to the required accuracy
by differentiating (2.%). In order to progress further, 1t 1s necessary to
know the function p{r,z), which is different for the cases of weak (g > 1)
and strong (g8 << 1) megnetic flelds. In the zeroth approximation, we have

2
W)+ =U, p=p(s) for B=0 (2.6)
Ve 2p2 __ 2 U—=1VE _ for W—0 2.7
o FerBi=U, pr’=-—p = f(2) 2.7)
Substituting these expressions into (2.4) and (2.5), we find for these
cases (pV)I r? R 1 (pV)' , r2
n=—CEET, s = (B (PR —Rlgs) @8
vy r 1 ((fVy re
vr=——Trln-ﬁ, 01224(—}?-) (r"—-—Rz—rzlnﬁ) (2.9)
The transition surface on which the velocity crosses the local signal
velocity [4] e, = VcTz Ry (c3 = H 2/ 4mp) (2.10)
is found from Equation v®= o,2. According to {2.2), we have
¢ = cr? + pr’B* = (y — 1) W 4 pr’B? (2.11)
To the required approximation, the velocity is given by Expression
2 =V + Wo, + v (2.12)

Let wu denote the velocity at the exit, where p = 0(y®= 2v) , and using
(2.1), we represent the equation of the sonic surface for the cases of weak
and strong field, respectively, as

vz=:—;iu2+23_:zpr232, =t 222w (o) (2.3)

Here, in both expressions, the second term is small, and in it we may sub-

stitute p from (2.6) or (2.8), respectively.

In the first approximation in ¢ , in the limiting cases of &~ 0 or
W - 0 , the sonic surface will be plane and given by Equatiohs
V2 (z) = 1;} w, V() =u (2.14)
Terms of order #Z 1in the first equation of (2.13) and order W 1in the
second stipulate that this surface (for r > A) 1s inclined toward the side
of increasing V(z) .

To determine the effect connected with the inclusion of the quantities
~ ¢®, 1t 1s necessary, on the left-hand side of Equation (2.13), %o subsbti-
tute »2 from the second equation of (2.1).

We note that according to relations (2.6) and (2.7), for the cases of

B>1 ana p <1 we may write
O (1, = w3ty (2.15)
P e f ut— V2

These quantities, and consequently, also the radial components of the velo-
city, vanish on the sonic surface in the zero-th approximation., The latter
is obvious from the fact that the sonic surface in the zero-th approximation
coincldes with the plane of the minlmum cross-section of the nozzle.
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To obtaln the complete expression for the velocity we must also take into
account a correction to V¥ , due to varlabillty of B(g) . Aecording to
(2.1), this correction is r
8V = — BB’ szr*"dr (2.16)

r
where instead of p in thecasesof P>>1 and f <€ 1 we may correspondingly
substitute the expressions from (2.6) and (2.7). Thus, the equations of the
sonic surfaces assume the form (9 17)

R e (o T B 2L prepr — 228 (R
3 5, 2 2 _- B¢ ,3
vz — TV2(r2-—R2——r2ln%2-)=cA*2-—2 3TW-— B‘: ln_%- (2:18)

If the expansion of V(z) 1s limlted to the linear terms, then taking the
zero=-th approximation sonlic surface to be the plane =z = 0 , we find

rg— 27 pBE T+1 ) g1t — R
V= i R+ v (R RIn ) + BB p m X
(2.19)
. 2—yWg /R 1 , 3 Brey® r
Vie =t () T (R e ) S
(2.20)

Here terms ~ V’2 in (2.19) as well as in (2.20) give the curvature of the
sonic surface toward the side opposite to the mass flow (z < 0) . In fact,
expanding functions of r 1in powers of (r — R), we get

1 2 — 20B2%R 1 , ,
Viz= H«I‘LCT (r—R)— sz_T V'2(r — R)2 + BB'p*R® (r — R) (2.21)
7 2 — 2(T ) 3 , ]

Viz= 37 AR R(’—R)—EVZ(r—B)2+ﬁ(r—B) (2.22)

As shown by Equations (2.21) and (2.22), the influence of the terms ~ 2
increases away from the streamline r =R . Terms ~ B’ partially compen-
sate the main terms linear in (r — R) when BB‘< O , and reinforce them
when BB‘> 0 ,

In the cases of both weak and strong magnetic filelds the sonlc surfaces
have the form schematically shown in Fig.5, where the line (04 corresponds
to the neglecting of terms ~ V’®, while the line 0B shows the shape of
the sonic su face for limiting weak or limiting strong fields, when the terms
~ B or ~ ¥ (and also ~ B’) may be neglected in {2.21) or (2.22). When B=0,
(2.21) becomes the well-known expression for the sonic surface in ordinary
gas dynamics [5] .

3. On the atability of the flow, Restricting ourselves to the zero-th
approximation in the small parameter ¢ , we shall conslder the stablility of
a c¢ylindrical plasma Jet in a magnetic fleld having only an azimuthal com-
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ponent F = F . In a system of coordinates, moving with fluild velocity vV,
the fluid is at rest, and we may apply the criterion on the absence of con-
vective instability [6]

dlnp 8ap
~ dlnr <z+yg (B_TJT) (-1)
Considering the condition of equilibrium along the radius
p=— o (rHY (3-2)

(satisfied 1n the first approximation in e ), the criterion (3.1) may be
represented in the form

(}f—:)'+,t—p§:s—a<0 (2= er+425) (3.3)

This stabillity condition {3.3) was obtained in [7] (*) on the basis of an
analysis of balance of forces, acting on an annular plasma tube, It 1is the
local stability conditlon for thin plasma annuli. Violation of thils condi~
tion results in the displacement of the annuli along the radius. In the pre-
sent case, they are simultaneously convected together with the flow along the
z-axis.

If condition (3.1) 1is satisfied, then in the absence of hellcal instabi-

11ty we must require yet another criterion [6]
Mr <t o« (HY<O (3.4)

When (3.4) is violated, helical instabllity arises with mode m = 1 and
low pitch. From Expressions (3.3) and (3.4), it follows that for stabllity
with respect to axisymmetric perturbations, 1t 1s at least necessary that
the derivative (Ha/?a)' be negative; while for stability with respect to
helical perturbations, we must require the derivative (r#°)’ to be negative.

1t turns out that in the isentropic case [S(g) = const], the criterion (3.3)
is expressed only in terms of the "frozen" integral 3(g) =g/4mpr . In fact,
expressing g in terms of B , we may express (3.2) and (3.3) in the form

¢’ = — p*B (r*BY’, ¢ (pB?) -+ 4p’rBt < 0 (3.5)
where the prime represents differentlation with respect to » . Eliminating
e, from these, we get dB? | dr < 0 (3.6)

Since dB? / dr = prV dB*/ d§ and V>0, then for stability with

respect to axisymmetric disturbances it 1s necessary that 43°/¢gg < 0 . 1In

Section 1 flows with a linear dependence 5 = p (¢ + ¢) were considered.

In thls case — : ]
H = Vinorb [Y, oV (1 — R?) + ¢l (3.7)

in which, for the purp¢se of investigating stabllity, the slowly varying -

functions p(z) and v(z) occurring, may be taken to be constantas. From

*) See also [1] page 286.
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condition (3.6), 1t follows that stability occurs in the regilon £ < —g¢ ,
located in Figs. 2 to 4 below the curve (represented by heavy line) on which
g=-c .

For the case ¢ = O (ef. Fig.2) condition (3.6) leads to the requirement
r» <R . Criterion (3.4) narrows down the stablility region to the interval
2/, R®< r?< R®, so that the singular point on the current line, 1lying at
r? = '/,R?, falls into the stable reglon.

Similarly, in the cases ¢ 2 O condition (3.6) shows that stability
occurs in the region E< ~—~g¢ ,or for P> 0, in the region negative x

The coordinates (r,”) of the singular point in the family of current
lines T = const are related by

e R o
ret = i (3.8)
This relation was obtalned from the requirement »I/3r = O under the con-

dition that p(g) = b(e + ¢) . Criterion (3.4) in this case gives
5 6 (R? ¢
> (- o) (3.9)

i.e. the singular point also falls inside the stable region. However, it
lies in the immedlate nelghborhood of the inner electrode.

We ncte that in the case of weak magnetlic fleld g ~ rB(g) , and for
B = const , the two stability criteria (3.6) and (3.4) are not satisfied.
Por strong magnetic field, the case B = const corresponds to séability with
respect to helical perturbatlons, since g ~ 1/r . However, the condition
(2.6), which is general for weak and for strong flelds, 1s not satisfled.

In the case of limiting strong magnetic field B* <€ 1 (withB ==const),
for a flow that 1s slowly varying along the x-axis, there exlsts the integral
[2]

prtB (§) = F (z) 3.10)
while the streamlines are determined by Expression
g
A (8) 48 - -
SVU_F()B =V2F () hg (3.11)

0

From (3.10), 1t follows that H = prB = r™1 F (z), and criterion (3.4)
holds everywhere. Investigation of (3.11) for B = b(E + ¢) shows that the
streamline pattern obtained i similar to that shown in Figs. 2 to 4 , Cri-
terlon (3.6) also leads to the requirements € < — ¢ ,so that the stability
reglons lie below the corresponding curves where F changes sign.

The authors express thelr gratitude to A.L., Morozov and K.V. Brushlinskil
for discussions and valuable advice,
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